An Inequality for expectation of means of positive random variables
نویسندگان
چکیده
منابع مشابه
Limits Laws for Geometric Means of Free Positive Random Variables
Let {ak}k=1 be free identically distributed positive non–commuting random variables with probability measure distribution μ. In this paper we proved a multiplicative version of the Free Central Limit Theorem. More precisely, let bn = a 1/2 1 a 1/2 2 . . . an . . . a 1/2 2 a 1/2 1 then bn is a positive operator with the same moments as xn = a1a2 . . . an and b 1/2n n converges in distribution to...
متن کاملAn entropy inequality for symmetric random variables
We establish a lower bound on the entropy of weighted sums of (possibly dependent) random variables (X1, X2, . . . , Xn) possessing a symmetric joint distribution. Our lower bound is in terms of the joint entropy of (X1, X2, . . . , Xn). We show that for n ≥ 3, the lower bound is tight if and only if Xi’s are i.i.d. Gaussian random variables. For n = 2 there are numerous other cases of equality...
متن کاملan application of fuzzy logic for car insurance underwriting
در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...
Rio-type inequality for the expectation of products of random variables
In [5], Lehmann gave a simple proof of this identity and used it in his study of some concepts of dependence. This identity was generalized to functions h(X) and g(Y) with E[h2(X)] <∞ and E[g2(Y)] <∞ and with finite derivatives h′(·) and g′(·) by Newman [6]. Multidimensional versions of these results were proved by Block and Fang [1], Yu [13], and more recently by Prakasa Rao [7]. Related covar...
متن کاملFano's inequality for random variables
We extend Fano’s inequality, which controls the average probability of (disjoint) events in terms of the average of some Kullback-Leibler divergences, to work with arbitrary [0, 1]–valued random variables. Our simple two-step methodology is general enough to cover the case of an arbitrary (possibly continuously infinite) family of distributions as well as [0, 1]–valued random variables not nece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Functional Analysis
سال: 2017
ISSN: 2008-8752
DOI: 10.1215/20088752-3750087